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Abstract

In this paper, we give a summary of methods of finding the volume of a solid bounded between a quadric surface and a
plane,  which  are  extensions  to  [2,4].  We  include analytical  methods,  and  applications of  Divergence  and Stokes'
Theorems.

1 Introduction

In this paper, we give descriptions of finding the volume bounded by a quadric surface and a plane.
Unless otherwise is  specified,  we only discuss the cases where there is a finite  volume for the
bounded solid. In particular, we will focus on the surfaces of an ellipsoid, a hyperboloid of two
sheets and a paraboloid. We usually start with a general introduction of a method and lead to a
particular  example.  In  this  paper,  we give several  analytical  methods  using  various  coordinate
systems  where most students learn in a  multivariable Calculus  class. We often see the needs of
change of variables and change of bases to transform an arbitrary quadric surface into a standard
form [1] before applying integration techniques, the methods described here are accessible to those
who have learned Linear Algebra and multivariable Calculus. We assume readers are familiar with
the Divergence and Stokes'  Theorems and we will  also describe how we may apply these two
principles to find the volumes of bounded solid.

We use the following five coordinate systems:

– initial coordinate system X ,  in which the quadric and the plane are given;

– canonical coordinate system X ' , used principal axis in which the quadric is in standard 
form [1,  Table 3.5-2, 3.5-7];

– “natural” coordinate system X ' ' , in which the origin is located in the center of a cross
section of the quadric and the plane and the axes are oriented along the axes of the section;

– “harmonized” system of spherical coordinate (ρ ,ϑ ,φ ) connected with natural coordinate
system X ' ' . The x-axis  for  “harmonized”  system  is  of ϑ=0 , the  y-axis  is  of
φ=0 ,ϑ=π

2
, and z-axis is of φ=π

2
,ϑ=π

2
;

– two-dimensional coordinates (θ ,ϕ ) , used for parametric representations of quadrics
 [1, 3.5-22, 3.5-24,3.5-25].
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Each of the volumes is calculated by the following six methods.

Method 1. Integration by quadratures using the coordinates X ' ' .

Method 2. Numerical integration of the distance from point on quadric to the plane using the

coordinates X ' ' .

Method 3. Numerical integration of the distance from point on quadric to the  origin of “natural”
coordinate system X ' ' with using “harmonized” system of spherical coordinate (ρ ,ϑ ,φ ).

Method 4. Numerical integration using the Divergence Theorem in the coordinates (θ ,ϕ ) .

Method 5. Numerical integration with the use of Stokes' Theorem in the coordinates (θ ,ϕ ) .

Method 6. Integration with the use of discontinuous integrand in the coordinates (θ ,ϕ ) .

2 General Description of a Quadric surface and a Plane

Since our main focus is on finding the volume bounded by a quadric surface and a plane. We first
consider the equation of the quadric surface in a matrix form: 

X⃗ T A X⃗ +2 B⃗⋅X⃗ +a00=0 , (1) 

where A=(
a11

a12

a13

a12

a22

a23

a13

a23

a33
) , B⃗=(a10 , a20 , a30) , X⃗=(

x
y
z) , a ij are real  numbers,  i , j=0,1 ,2 ,3 , and

a11> 0. Alternatively, we sometimes write a quadric surface in the scalar form of: 

f (x , y , z )=a11 x2
+a22 y2

+a33 z2
+2 a12 xy+2 a13 xz+2 a23 yz+2 a10 x+2a20 y+2a30 z+a00=0. (2)

Also, we consider the equation of the plane in the forms of

N⃗⋅X⃗ +N 0=0, n⃗⋅X⃗ +n0=0, and g ( x , y , z )=n1 x+n2 y+n3 z+n0=0 , (3)

where N⃗=(N 1 , N 2 , N 3) is a normal vector to the plane, N 0 is a constant,  n⃗=(n1 , n2 , n3) ,

and n i=
N i

√N1
2
+N 2

2
+N 3

2
for i=0,1,2, and 3.

2.1.  Transformation of the quadrics equations.  We are interested in those solids bounded by
quadric surfaces and a plane produce finite volumes. The quadric surface we discuss in this paper
will be an ellipsoid, an elliptic paraboloid, a hyperboloid of two sheets or a cone; however, we will
leave  it  to  reader  to  explore  the case when quadric  surface is  a  cone.  We classify the quadric
surfaces by using the following scenarios:

Case  1.  If  I=a11+ a22+ a33 , J=∣a11 a12

a12 a22∣+∣
a22 a23

a23a33∣+∣
a33 a13

a13 a11∣> 0, Δ=∣
a11

a12

a13

a12

a22

a23

a13

a23

a33
∣=0, and

B⃗⋅V⃗ 3≠0,  where V⃗ 3 is the normalize eigenvector corresponds to λ 3=0. Then the quadric is

an elliptic paraboloid. Indeed, we have

2
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λ1=
I+ √ I 2

−4 J
2

, λ 2=
I−√I 2

−4 J
2

, λ 3=0, (4)

and the corresponding eigenvectors to λ1  and λ 2 , in case of three different eigenvalues, are

v⃗1=(
a12a23−(a22−λ1)a13

a12 a13−(a11−λ1)a23

(a11−λ1)(a22−λ 1)−a12
2 ) and v⃗2=(

a12 a23−(a22−λ2)a13

a12 a13−(a11−λ2)a23

(a11−λ 2)(a22−λ2)−a12
2 ) , (5)

respectively. If we have a repeated eigenvalue, we use (5) for the eigenvector v⃗1  associated with

the single eigenvalue, and the vector v⃗2 can be choose to be any vector perpendicular to v⃗1 . If

one of these vectors is  0⃗ , we rename corresponding  λ as  λ 3 . We remind the readers to

make necessary renumbering  of  vectors  in  various  special  cases.  We normalize  v⃗ i and write

V⃗ i=
v⃗ i

| v⃗ i |
for i=1,2 . We set  V⃗ 3=[ V⃗ 1V⃗ 2] and form the matrix R=(V⃗ 1 ,V⃗ 2 , V⃗ 3).  If  we

set x0=
B⃗⋅V⃗ 1

λ1
, y0=

B⃗⋅V⃗ 2

λ2
, z0=

a00−λ1 x0
2
−λ 2 y0

2

2 B⃗⋅V⃗ 3

,  and X⃗ 0=(
x0

y0

z0
) ,

then the substitution X⃗=R( X⃗ '− X⃗ 0) will transform the original quadric into

−
λ 1

2 B⃗⋅V⃗ 3

(x ')2−
λ2

2 B⃗⋅V⃗ 3

( y ' )2=z ' . (6)

We note that the signs of λ1 and λ 2 are the same since J=λ 1λ 2> 0, which gives us

an  alternative  way  of  categorizing  the  quadric  to  be  an  elliptic  paraboloid.  We  denote

a=√∣2 B⃗⋅V⃗ 3

λ1
∣, and b=√∣2 B⃗⋅V⃗ 3

λ 2
∣. If the sign of B⃗⋅V⃗ 3  coincides with the sign of λ1 , we

change the direction of the axis  z '  to the opposite direction.  We obtain the equation of the

paraboloid in the form of
(x ')2

a2 +
( y ' )2

b2 =z ' . In matrix form we obtain the following equation: 

X⃗ 'T A' X⃗ '+2 B⃗ '⋅X⃗ '=0 , where A '=(
a−2

0
0

0
b−2

0

0
0
0) , B⃗ '=(0,0 ,−

1
2
) .    (7)

Case 2. Suppose Δ≠0 and the signs of λ1 ,  λ 2 and λ 3 are the same and they are different

from the sign of  a00−B⃗ A−1 B⃗T . Then such a quadric corresponds to an ellipsoid. In particular,

the substitution X⃗=R X⃗ '−A−1 B⃗T will transform the original ellipsoid into

λ1( x ' )2+ λ2( y ' )2+ λ3(z ' )2−B⃗ A−1 B⃗T
+ a00=0 . (8)

3
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We denote a=√ B⃗ A−1 B⃗T
−a00

λ1
,b=√ B⃗ A−1 B⃗T

−a00

λ2
, and c=√ B⃗ A−1 B⃗T

−a00

λ3
. As a result, we obtain

the equation in the form of
(x ')2

a2 +
( y ' )2

b2 +
(z ' )2

c2 =1. In matrix form we obtain the following equation:

X⃗ 'T A' X⃗ '+2 B⃗ '⋅X⃗ '+a ' 00=0 , where A '=(
a−2

0
0

0
b−2

0

0
0

c−2) , B⃗ '= 0⃗ , and a ' 00=−1.      (9)

Case 3.  Suppose Δ≠0 and not all of the signs of  λ1 , λ 2 and λ 3 are the same, among the

numbers  λ1 , λ 2 , λ 3 and a00−B⃗ A−1 B⃗T , one number differs in sign from the other three

numbers. Such quadric corresponds to a  hyperboloid of two sheets. We assume  the sign of λ1

differs from the signs of λ 2 , λ 3 , and a00−B⃗ A−1 B⃗T . We name this situation as sub-case 1. The

substitution ξ 1=
x '
a

,ξ 2=
y '
b

,ξ 3=
z '
c

, a=√ B⃗ A−1 X⃗ 0−a00

λ1
, b=√ a00−B⃗ A−1 X⃗ 0

λ 2
, and

c=√ a00−B⃗ A−1 X⃗ 0

λ3
will transform equation (8) into the form of ξ 1

2
−ξ 2

2
−ξ 3

2
=1 ; that is, to the

canonical equation of the hyperboloid of two sheets. In matrix form we reach the following equation:

X⃗ 'T A' X⃗ '+2 B⃗ '⋅X⃗ '+a ' 00=0 , where A '=(
a−2

0
0

0
−b−2

0

0
0

−c−2) , B⃗ '= 0⃗ , and a ' 00=−1. (10)

Exercise. Obtain the same results in other sub-cases within case 3.

The other cases beyond cases 1,2 and 3 will not produce finite volumes for the solids, which we will
not discuss here.

2.2.  Equation  for  the  curve  of  intersection  – natural  coordinates. Let  us  show  that  the
intersection curve of the quadric and the plane is an ellipse. The equation of the quadric surface, we
use in the form of (1), is equivalent to (7), (9) and (10). The equation of the plane will be written in

the form of m⃗⋅X⃗ '+m0=0 , and | m⃗ |=1.

2.2.0. We adopt the coordinate system in which the equation of the cross section has the forms of
x ' '=0 and a23 y ' ' z ' '=0 . Let  the  origin  of  the  coordinate  system x ' ' , y ' ' , z ' ' ,

X⃗ ' '=(
x ' '
y ' '
z ' ' ) be at point  A⃗0 which will be defined later, the  basis in this  coordinate system

contains  vectors m⃗ ,U⃗ , and m⃗U⃗ . The  corresponding  transformation  is X⃗ '=r X⃗ ' '+ A⃗0 ,

where r=(m⃗ , U⃗ , m⃗U⃗ ). Vector U⃗ lies on the plane of the cross section, and it will be defined
explicitly later.

The substitution in the equation (1) yields

( X⃗ ' ' )T r A ' rT X⃗ ' '+2( A⃗0
T A'+ B⃗)r X⃗ ' '+ A⃗0

T A' A⃗0+2 B⃗⋅A⃗0+a00=0 , (11)

4
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and  the  substitution  in  the  plane  yields  m⃗⋅(r X⃗ ' '+ A⃗0)+m0=0 . The  element  of  the  matrix

r T A ' r with  the  (2,3)  position,  second  row  and  third  column  of r T A ' r , is  0  or

(r T A ' r )23=U⃗ T A ' [m⃗U⃗ ]=0 ,  since this determines the coefficient of the product y ' ' z ' ' .

We find the basis vector U⃗  by solving the following simultaneous equations:

{
m⃗⋅U⃗=0 ,

U⃗ T A' [m⃗U⃗ ]=0 ,
|U⃗ |=1 .

(12)

Each of the roots of the  quadratic  equation (12) corresponds to one of the axes of the quadric

surface, we may use either solution for further investigation. These solutions corresponds to U⃗

and V⃗=m⃗U⃗ . We get the components of U⃗ T
=(U x ,U y ,U z) by using the following equations:

(a2
−b2

)c2 m3
2 m2 U y

2
+(b2 c2

(m2
2
−m3

2
)−a2b2

(m1
2
+m2

2
)+a2 c2

(m1
2
+m3

2
))U y+b2

(c2
−a2

)m2=0 ,

U x=−
1+m2 U y

m1

, and U z=
1
m3

. We next normalize the vector U⃗ .

With information  from the vector U⃗ , it  allows us to  define  the coefficient  of  ( y ' ' )2 to  be

l 2=(r
T A ' r)22=U⃗T A ' U⃗ and  the  coefficient  of  (z ' ' )2 to  be l 3=(r

T A' r )33=V⃗ T A ' V⃗ .  We

define the origin of coordinates А⃗0 to be on the plane of the cross section  m⃗⋅A⃗0+m0=0 . We

make  the  coefficients  of y ' ' and  of z ' ' equal  to  zero.  That  is  (( A⃗0
T A'+ B⃗ ' )r )2=0 , and

(( A⃗0
T A'+ B⃗ ' )r )3=0. Then А⃗0 defines  the  center  for  the  ellipse  of  the  cross  section.  The

constant term  of  the  equation  (11)  in  the  coordinates x ' ' , y ' ' , z ' ' is  equal  to

a0 ' '= A⃗0
T A' A⃗0+2 B⃗ ' A⃗0+a ' 00 . The semi–axes of the ellipse are respectively

ae=√−a0 ' '
l 2

 and be=√−a0 ' '
l 3

. (13)

Hence, the cross section is an ellipse if and only if the signs of the numbers l 2 and l 3 are the

same and differ from the sign of a0 ' ' .

Let us write the equations defining the intersection curve in each of the cases. For convenience, we

use the point T⃗ to denote the point where the tangent plane to the quadric is parallel to the given

plane; obtaining such T⃗ is possible due to [2]. We have one such point for the paraboloid. We
have  two  such  points  for  the  ellipsoid  and  the  hyperboloid  of  two  sheets,  and  the  points  are
symmetrical about the origin. Simple calculations yield the following results.

2.2.1. We use the substitution X⃗=R( X⃗ '− X⃗ 0) for the paraboloid in the equation (2) and yields

m⃗⋅X⃗ '+m0=0 , where m⃗= n⃗ R , mi=n⃗⋅V⃗ i , m0=n0−R n⃗⋅X⃗ 0 . (14)

The center of the ellipse А⃗0  and the point T⃗ have the following coordinates respectively: 

x ' A=x 'T=−
a2 m1

2 m3

, y ' A= y ' T=−
b2 m2

2m3

, z 'T=
a2 m1

2
+b2 m2

2

4 m3
2 , and z ' A=−

m0

m3

+2 z 'T . (15)

5
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The semi-axes of the ellipse are ae and be respectively: ae=√−a0 ' '
l 2

 and be=√−a0 ' '
l 3

,

where            −a0 ' '=z ' T−
m0

m3

, l 2=
U x

2

a2 +
U y

2

b2 , l 3=
V x

2

a2 +
V y

2

b2 , and l 2 l3=
m3

2

a2 b2 .             (16)

The area of the ellipse is S e (m0)=π ae be=
−a0 ' ' π

√ l 2l 3

=π a b
z ' T−

m0

m3

m3

. (17)

The coordinates of any point of the quadric in the solid of intersection have the following standard 
vector form:

X⃗ '=T⃗ +ae(t )U⃗ cosϕ+be (t) V⃗ sinϕ +( 0,0 ,t ) , ae (t)=√ t
l 2

,be( t)=√ t
l3

, where t∈[0, z A− zT ] . (18)

2.2.2. For the ellipsoid, the substitution X⃗=R X⃗ '−A−1 B⃗T in the equation (2) gives

m⃗ X⃗ '+m0=0 , where m⃗= n⃗ R , and m0= n⃗ X⃗ 0+n0 . (19)

The center of the ellipse А⃗0  and the point T⃗ have the following coordinates:

x 'A=−
m0 m1 a2

w2 , y ' A=−
m0 m2 b2

w2 , and z ' A=−
m0 m3 c2

w2 , where w2
=m1

2 a2
+m2

2b2
+m3

2 c2 ,

x ' T=−
m1 a2

w
, y 'T=−

m2 b2

w
, z 'T=−

m3 c2

w
, and T⃗ '=−T⃗. (20)

The  semi-axes  of  the  ellipse  are ae and be respectively: ae=√−a0 ' '
l 2

and be=√−a0 ' '
l 3

,

where −a0 ' '=1−
m0

2

w2 ,

l 2 l3=
w2

a2 b2c2
(m1

2
+m2

2
+m3

2
)

, l 2=
U x

2

a2 +
U y

2

b2 +
U z

2

c2 , and l 3=
V x

2

a2 +
V y

2

b2 +
V z

2

c2 . (21)

The area of the ellipse is

S e (μ 0)=π ae be=
−a0 ' ' π

√l 2 l 3

=π a b с
√m1

2
+m2

2
+m3

2

w
(1−μ 0

2
) , where μ 0=

m0

w
.             (22)

The coordinates of any point of the quadric in the solid of intersection have the following standard
vector form:

X⃗ '=−μ T⃗ +ae( t)U⃗ cosϕ+be (t) V⃗ sinϕ , ae( t)=√ 1−μ 2

l 2

, be (t)=√ 1−μ2

l 3

, and μ∈[−1,μ 0 ]. (23)

2.2.3. For the hyperboloid of two sheets, if the sign of λ1 differs from the signs of λ 2 ,λ3 and

a00−B⃗ A−1 B⃗T , then the substitution X⃗=R X⃗ '−A−1 B⃗T in the equation (2) gives equation (19).

The center of the ellipse, А⃗0  and the point T⃗ have the following coordinates:

x 'A=−
m0 m1 a2

w2 , y ' A=
m0 m2 b2

w2 , and z ' A=
m0 m3c2

w2 , where w2
=m1

2 a2
−m2

2 b2
−m3

2 c2 ,

6
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x 'T=
m1 a2

w
, y 'T=−

m2 b2

w
, z 'T=−

m3 c2

w
, and T⃗ '=−T⃗. (24)

The semi-axes of the ellipse are ae  and be respectively: ae=√ a0 ' '
−l 2

 and be=√ a0 ' '
−l 3

, where

a0 ' '=
m0

2

w2−1 , −l2=
−U x

2

a2 +
U y

2

b2 +
U z

2

c2 , −l3=
−V x

2

a2 +
V y

2

b2 +
V z

2

c2 , and l 2 l3=
w2

a2 b2c2
(m1

2
+m2

2
+m3

2
)

. (25)

The area of the ellipse is S e (μ 0)=π ae be=
a0 ' ' π

√ l 2l 3

=π abс
√m1

2
+m2

2
+m3

2

w
(μ 0

2
−1) ,μ 0=

m0

w
.      (26)

The coordinates of any point of the quadric in the solid of intersection have standard vector form:

X⃗ '=−μ T⃗ +ae( t)U⃗ cosϕ+be (t) V⃗ sinϕ , ae( t)=√ μ
2
−1
−l2

, be (t)=√μ
2
−1
−l 3

, and μ∈[μ0 ,−1] . (27)

The other cases will not produce finite cross section, which we will not discuss here.

Remarks. We make the following observations in view of the equations (22-27): 

1. A set the of the cross sections of the given quadric by parallel planes is a family of the similar
ellipses. 

2. We may say that:

a) a diameter of the paraboloid is a beam, parallel to its axis and beginning at point T⃗ ;

b) a diameter of the ellipsoid is a segment passing through its center and connecting points T⃗ '

and T⃗ ;

c) a diameter of the hyperboloid of two sheets is a beam, passing through its center and outgoing

into the infinity from points T⃗ ' and T⃗ and lying on the straight line T⃗ T⃗ ' .

The diameter contains the centers of the ellipses obtained from the intersection of the quadric and
the family of planes parallel to the given plane, which touches the quadric at  the point  T . The
Figure  1 illustrates  the  statements  1  and 2.  It  shows the  solids  cut  off  by the  plane  from the
paraboloid (Fig. 1a), the ellipsoid (Fig. 1b) and the hyperboloid of two sheets (Fig.1c). By varying
the parameter m0 ,  we construct family of parallel planes and observe the center of the elliptical

cross-section slides in the direction along the diameter.

Figure 1. Solids cut off by the plane from the paraboloid (Fig. 1a), the ellipsoid (Fig. 1b) and
the hyperboloid of two sheets (Fig.1c). (Plot produced with [GInMA])

7
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2.3. Equation for the curve of intersection-classic coordinates

In the description of the quadric surfaces, we use the canonical variables X ' as initial variables
and rewrite the equation in the internal variables for the surface.

2.3.1. For the paraboloid described by the equations (7) and (14), we make the substitution 

{
x '=a t cosϕ ,
y '=b t sin ϕ ,

z '=t 2 ,
t≥0.

 (28)

We transform the plane equation into          t 2
−2 t s t+

m0

m3

=0 , t s=
x ' A

a
cosϕ+

y ' A

b
sinϕ .         (29)

The solution of this equation is t=t s±√ t s
2−

m0

m3

. If the vertex of the paraboloid X 0 belongs to

the intersection solid, then we have a unique positive solution  t=t s+√ t s
2−

m0

m3

for any value of

ϕ . If  X 0 does not belong to the solid of intersection,  then there are two positive solutions

t> 0 ,  which exist only if ϕ satisfying the condition of t s
2
≥

m0

m3

.

2.3.2. For the ellipsoid described by the equations (8) and (19) we make the following substitution 

{
x '=a sinθ cosϕ ,
y '=b sinθ sin ϕ ,

z '=ccosθ ,
(30)

and the intersection curve between the ellipsoid and the plane is

(a m1cosϕ+bm2 sinϕ)sinθ +cm3 cosθ +m0=0 . (31)

Under the condition  |m3 c |>|m0 | , the above equation has a unique positive solution for  θ

when ϕ∈[0 ,2π ] ,

sinθ=
m0

2
−c2 m3

2
−t s m0−cm3√c2 m3

2
+t s

2
−m0

2

c2 m3
2
+t s

2
−t s m0+m3 c√c2 m3

2
+ t s

2
−m0

2
, cosθ=

(cm3+√c2 m3
2
+t s

2
−m0

2
)(t s−m0)

c2 m3
2
+t s

2
−t s m0+m3c √c2 m3

2
+ t s

2
−m0

2
,

and θ (ϕ)=π
2
−arccos

t s

√c2 m3
2
+t s

2
−arccos

−m0

√c2 m3
2
+t s

2
,  where t s=a m1 cosϕ+b m2sin ϕ . (32)

2.3.3. For  the hyperboloid of two sheets  described by the equations (10) and (19), we make the

substitution {
x=a cosh t ,

y=bcosϕsinh t ,
z=c sinϕ sinh t .

(33)

The curve of intersection between the hyperboloid and the plane is

(bm2 cosϕ+c m3 sinϕ)sinh t+a m1cosh t+m0=0.  (34)

8
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Under the condition −
m0

m1

>a , the equation (34) has a unique positive solution for t for any

ϕ∈[0 , 2π ] : t=ln
1+τ
1−τ

, where τ =
t s−√t s

2
+ m0

2
−a2 m1

2

m0−m1 a
, and t s=b m2 cosϕ+c m3sin ϕ . (35)

3 Examples

We consider the following three randomly selected solids. Let us first consider a paraboloid whose
vertex belongs to the solid of intersection.

Example 1 We consider the paraboloid given by the equation of X⃗ T A X⃗ +2 B⃗ X⃗ +a00=0 , where

A=(
5
4
7

   
4
6
1

   
7
1

243 /14) , B⃗=(
−2
−3
7 ) , a00=−7, and X⃗=(

x
y
z ) or we may write the paraboloid in the

form of f (x , y , z )=5 x 2
+ 8 xy+ 6 y2

+ 14 x z+ 2 y z+
243
14

z 2
−4 x−6 y+ 14 z−7=0 , and consider

the plane in the form of g ( x , y , z )=x−3 y+ 2 z−2=0.  Let us name the solid bounded by the
quadric  surface  and  the  plane  S 1. We  note  that  the  eigenvalues  for  the  paraboloid are

397+√36145
28

,
397−√36145

28
, and  0, respectively. The  eigenvectors  for  the  paraboloid are

V⃗ 1≈(
0.4317
0.1745
0.8850) , V⃗ 2≈(

0.3846
0.8519
−0.3555) and V⃗ 3≈(

−0.8159
0.4938
0.3006 ) , respectively.  If  we  write

f (x , y , z ) in  the  canonical  form  by  using  the  canonical  variable X ' , we  get

( x '
a )

2

+( y '
b )

2

= z ' , a≈0.46373 , and b≈0.78120. The equation of  the plane  when using the

canonical  variable X '  is  m1 x '+m2 y '+m3 z '+m0=0 where m1≈0.4485 ,m2≈−0.77026 ,

m3≈−0.4533 , and m0≈−2.51798.  The center of the elliptical cross section is at the point

A⃗0=(
21217
6241

,−
4919
6241

,−
11746
6241

) . The calculations above are obtained from Maple (see [7],[8]).

Figure 2. Solid S 1 formed by the paraboloid and the plane.
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Next we consider a solid formed by an ellipsoid and a plane as follows:

Example 2 Consider the ellipsoid of the form X⃗ T A X⃗ + 2 B⃗ X⃗ + a00=0 , where

A=(
1
−1
0

   
−1
5
2

   
0
2
2) , B⃗=(

−2
3
−3) , a00=5 ,  and X⃗=(

x
y
z )  or we may write the surface as

f (x , y , z )= x2−2 xy+ 5 y2+ 4 y z+ 2 z2−4 x+ 6 y−6 z+ 5=0 ,  and  consider  the  semi-space
g ( x , y , z )=3 x−4 y+3 z−21≤0. We  note  that  the  eigenvectors  for  the  ellipsoid are

V⃗ 1≈(
−0.1724
0.8877
0.4271 ) , V⃗ 2≈(

−0.6318
0.2332
−0.7392) , and V⃗ 3≈(

−0.7558
−0.3971
0.5207 ) , respectively. The  center  of  the

ellipsoid  is  at  the  point X⃗ 0=(0,    −2,    3.5) , the  semi–axes  for  the  ellipsoid  are

a≈1.3667 , b≈2.8982 , and  c≈4.9226 , respectively.  The  equation  for  the  ellipsoid  is

( x '
a )

2

+( y '
b )

2

+( z '
c )

2

−1=0 , and  for  the  plane  is  m1 x '+m2 y '+m3 z '+m0=0 , where

m1≈0.4777 ,m2≈0.8654 ,m3≈−0.1514 , and m0≈0.4287.  Let  us  name  the  solid  of  this

intersection  S 2 . The  center  of  the  cross  section  of  the  solid,  an  ellipse,  is  at  the  point

A⃗0=(
5

43
,−

96
43

,
168
43
) . The calculations above are obtained from Maple (see [7],[8]).

Figure 3. Solid S 2 formed by the ellipsoid and the plane.

Let us consider the following solid formed by a hyperboloid of two sheets and a plane as follows:

Example 3  We consider the hyperboloid of two sheets of the form  X⃗ T A X⃗ +2 B⃗⋅X⃗ +a00=0 ,

where A=(
5
−1
−4

   
−1
−3
2

   
−4
2
−6) , B⃗=(

−2
−1
−7) , a00=−14 ,  and X⃗=(

x
y
z )  or we may write the surface as

10
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f (x , y , z )=5 x 2
−2 xy−3 y2

−8 x z−6 z2
+ 4 y z−4 x−2 y−14 z−14=0  and consider the plane

of g ( x , y , z )=9 x−7 y− z+ 19=0 . The eigenvectors are V⃗ 1≈(
−0.9319
0.1650
0.3230 ) , V⃗ 2≈(

−0.2544
−0.9320
−0.2580) ,

and V⃗ 3≈(
0.2585
−0.3226
0.9106 ) , respectively.  The  center  of  the  quadric  is  at  the  point

X⃗ 0=(−
3
5

,−
29
35

,−
73
70
). If the variable X ' is used, the equations for the hyperboloid  of two

sheets  becomes ( x '
a )

2

−( y '
b )

2

−( z '
c )

2

−1=0 , where  the  semi  axes  for  the  hyperboloid  are

a≈0.84365 , b≈1.31066 , and c≈0.77172 , respectively. The  plane  can  be  written  as
m1 x '+m2 y '+m3 z '+m0=0 where m1≈−0.8619 , m2≈0.3925 , m3≈0.3210 , and

m0≈1.7861 . Let us name the solid of  such  intersection S 3 . The center of the elliptical cross

section  is  at  the  point A⃗0=(−
5343
796

,−
4789
796

,
140
199

). The calculations  above are obtained from

Maple (see [7],[8]).

Figure 4. Solid S 3 formed by the hyperboloid and the plane.

4 Calculation methods

4.1 Volume and Natural Coordinates
Let the solid be bounded by the given quadric and the plane of m1 x '+m2 y '+m3 z '+m0=0 . We

consider  the  set  of  cross  sections  of  the  solid  by  parallel  planes  of  m∈( mT ,m0 ] , where

mT=−m1 x ' T−m2 y 'T−m3 z ' T . The  set  contains  similar  ellipses  of  the  area S e (m) , whose

centers A⃗m are located on the segment A⃗m∈( T⃗ , A⃗0 ] . The point T⃗ is excluded.  In this point

the  ellipse  degenerates  into  a  point.  The  volume  of  the  investigated  solid  is  easy to  find  by
integrating the area with respect to the coordinate z ' .  It is noted that for  a paraboloid we see

m3≠0 , and yet m3=0 for other two solids. We perform integration using different coordinate

when m3=0, which does not affect the result.  The volume of the solid bounded by the quadric

and the plane is:

11
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 V=∫
z ' T

z ' A

S e(m)dz '=
∂ z '
∂m ∫mT

m0

Se (m)dm=−
1

m3
∫
mT

m0

Se (m)dm .  (36)

4.1.1 Volume of the solid bounded by the paraboloid and the plane. We consider a paraboloid

of the form
(x ' )2

a2 +
( y ' )2

b2 =z ' and  a plane of  the form m1 x '+ m2 y '+ m3 z '+ m0=0 . It follows

from equation (17) that the area of the cross section is S e (m)=π ab

z ' T−
m
m3

m3

. Furthermore, we

see from equation (36) that:

V=−
1
m3
∫
mT

m0

S e(m)dm=
π ab

m3
2 ∫

mT

m0

(mT−m)d m=
π a b

2
(
mT

m3

−
m0

m3

)
2

,

V=
π a b

2 (m0

m3

+
a2 m1

2
+b2 m2

2

4m3
2 )

2

. (37)

An Exercise. Find the volume of S 1 by using the method mentioned in this section.

Answer:  The  volume  of  the  solid S 1 , calculated  by  using  formula  (37),  is  approximately

20.80907893464  (see Maple worksheet in [9]).

4.1.2. Let  the  solid  be  bounded  by  an ellipsoid  of
(x ')2

a2 +
( y ' )2

b2 +
(z ' )2

c2 =1 and  a plane  of  an

equation m1 x '+m2 y '+m3 z '+m0=0 . Then S e (m)=π a b c√ m1
2
+m2

2
+m3

2

w
(1−

m2

w
) .  The

volume  of  the  solid bounded  by  the  ellipsoid and  given  plane  is:

V=−
1

m3
∫
mT

m0

S e(m)dm=π a b c √m1
2
+m2

2
+m3

2∫
m0T

m0

(1−
m2

w
)d( m

√w) ,

V=
π a b c

3
(2+3μ−μ 3

) ,μ=
m0

√w
∈[−1 ;1] . (38)

The volume of the solid S 2 , calculated by formula (38), is approximately 50.496501830226. We

note the values of V (T⃗ )=0 and V (T⃗ ' )=
4
3
π a bc . T⃗ (T⃗ ' ) are poles in which polar planes

are parallel to given plane ([1, 3,5-8,c]) (see Maple worksheet in [9]).

4.1.3. Let  the  solid  be  bounded  by  a hyperboloid  of
(x ' )2

a2 −
( y ' )2

b2 −
( z ' )2

c2 =1 and  a plane

m1 x '+ m2 y '+ m3 z '+ m0=0 . Then V=
π a bc

3
(2+3μ−μ 3) ,μ=−

| m0 |

√w
<0. (39)

The volume of the solid S 3  calculated  using formula  (39) is  approximately  46.9249144931,

μ≈−3.96665310075  (see Maple worksheet in [9]).
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4.1.4 Mapping Ellipsoid to Sphere

To calculate the volume of the two pieces of an ellipsoid intersected by a plane, we may transform
an  ellipsoid  to  a  sphere  by  stretching.  Specifically,  we  turn  the  ellipsoid  into  the  sphere  by
stretching along perpendicular axes, which coincide with the principal axes of the ellipsoid.  The
secant plane by stretching along perpendicular axes goes into the plane. Let us consider the distance
from the secant plane to the center of the sphere l , and the ratio between l and the radius of

the sphere ρ , say k=
l
ρ . Then the ratio of the volume for the segments of the sphere is equal to

K=
2−3 k+ k 3

2+ 3 k−k 3 . (40)

It is clear that the ratio  K under compression or stretching will stay the same. If each of the
principal  axes  of  the  ellipsoid  is  stretched  with  the  coefficient √λ i , or x̃ '=x ' √λ 1 ,

ỹ '= y ' √λ2 , and z̃ '=z ' √λ3 , then  the  ellipsoid  becomes  a  sphere  with  the  radius

ρ=√ B⃗ A−1 B⃗T
−a00 and the volume  V 0=

4π
3
( B⃗ A−1 B⃗T

−a00)
3/2. Subsequently, the volume of

the ellipsoid is V=
4π

3√Δ
( B⃗ A−1 B⃗T

−a00)
3/2 ,  where Δ=λ1λ2λ3 . (41)

To find k ,  we use the equation of the plane of the form (19) m1 x '+ m2 y '+ m3 z '+ m0=0 ,

where mi= n⃗ V⃗ i and m0=n0− n⃗ A−1 B⃗T . As a result of stretching we get

m1

√λ1
x̃ '+

m2

√λ2
ỹ '+

m3

√λ1
z̃ '+ m0=0. (42)

Therefore, the distance from the plane to the center of the sphere; that is the distance from the plane

(42) to the origin is l=
|m0 |

√m1
2

λ 1
+

m2
2

λ2
+

m3
2

λ 3

. (43)

An Exercise. Find the volume of the solid S 2 by using the method mentioned in this section.

Answer:  We  calculate  the  volume  of  the  ellipsoid S 2 by  using  formula  (41),  and  it  is

approximately 81.67805252196. The volumes of two ellipsoidal pieces calculated by formulas (40)
and (43) are approximately 50.496501830226 and 31.181550691739. Since the solid S 2 contains

the center of the ellipsoid, the volume of S 2 should be more than half of the ellipsoid, and hence

the volume of the solid S 2 is approximately 50.496501830226 (see Maple worksheet in [9]).

4.2 Volume and Spherical Coordinates

Our goal now is to find the volume of the solid of the intersection between the quadric surface and
the plane by using spatial spherical coordinates. 

Let point A⃗0 be located on the given plane. We use coordinate system X ' ' with the origin at

A⃗0 and  axis x ' ' perpendicular  to  the  plane.  For  considered  solids S 1 , S2 , and S 3 , it  is
convenient to choose a coordinate system with origin at the center of the elliptical cross section and

13
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the axes oriented along the ellipse axes. In general,  the point A⃗0 can be chosen arbitrary.  We
recall that the equation (1) of the quadric is

X⃗ ' 'T r Ar T X⃗ ' '+ 2 ( A⃗0
T A+ B⃗)r X⃗ ' '+ A⃗0

T A A⃗0+ 2 B⃗ A⃗0+ a00=0 ,  the equation of the plane (2) is
x ' '=0 . We use the following spherical coordinate:

{
x ' '=ρ cosϑ ,

y ' '=ρ sinϑ sinφ ,
z ' '=ρ sinϑ cosφ .

(44)

We note the Jacobian  J=ρ 2sinϑ , and by substituting into the  quadric  equation,  we reach a
quadratic equation with respect to ρ (ϑ ,φ ). In other words, we have

k 2(ϑ ,φ ) ρ 2
+k 1(ϑ ,φ )ρ +k 0=0 , (45)

where k 0= A⃗0
T A A⃗0+ 2 B⃗ A⃗0+ a00 . We note that the paraboloid and the ellipsoid have the value of

k 0> 0 and unique positive solution of the equation (45) exists as follows:

ρ (ϑ ,φ )=
2k 0

√k1
2
(ϑ ,φ )−4k 0 k 2(ϑ ,φ )−k1(ϑ ,φ )

. (46)

In the case of the hyperboloid of two sheets, we observe that k 0< 0 and we obtain two positive

solutions of the quadric equation (45) which correspond to two different sheets of the hyperboloid.
We need the solution that corresponds to the desired bounded volume.

If the basis vector of the axis x ' ' is directed toward the surface, the volume is

V=∫
0

2π

d φ ∫
0

0.5π

sinϑ d ϑ ∫
0

ρ (ϑ ,φ )

ρ 2 d ρ=
1
3
∫
0

2π

d φ ∫
0

0.5π

ρ3(ϑ ,φ )sinϑ d ϑ .  (47)

Otherwise, in the integral over ϑ , the upper limit should be changed to −π
2

.

The choice of point  A⃗0 is not unique. It is sufficient that point is located on the surface of the

intersection  solid.  Its  position  is  indicated  by the  sign of k 0= A⃗0
T A A⃗0+2 B⃗⋅A⃗0+a00 .  We may

assume that the calculation accuracy increases if point is located near the center of the intersection
curve of the quadric surface and the plane. 

We make calculations using Maple student[simpson] with 256 points (see Maple worksheet in [8]).
We use 15 digits in all calculations. We obtain that the volume of the solid S 1  is approximately
20.8090792.  The  volumes  for  the  solid S 2 and  S 3 are approximately  50.4965018300 and
46.924952, respectively. 

The method has an interesting trick in the numerical solution. If point A⃗0  is on the intersecting

plane, but  outside the solid (outside the intersecting ellipse) and we use standard Maple solving
command solve, Maple return a complex solution for ρ  and may obtain a complex number as the
result for the volume calculation. This is surprising for an inexperienced user. But the correct result
is equal to zero and also may be calculated using Maple. The authors apply the following trick to
perform the calculations in cases where complex solutions occur: we add the inequalities that are
identically satisfied (for example x+1111>0 ) into the simultaneous equations which we solve
using Maple. After this Maple calculations with solve command, the answers often become correct.

Users  should  be noted  that  there  is  a  significant  difference  between  a  theoretical  solution  and
computational one, when Maple command solve is used.
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4.3 Volume and Divergence Theorem
We first discuss a general strategy of how we may use the Divergence theorem to find the volume 
of the solid bounded by a quadric surface and a plane. We assume the followings:

(1) the standard form equation of the quadric f (x ' , y ' , z ' )=0 uses the canonical coordinate 
system X ' and principal axis,

(2) the equation of the plane is m⃗⋅X⃗ '+m0=0 ,  where m⃗=(m1 ,m2 ,m3) is a unit vector, 

(3)  the  transformation  of  parametric  representations  to  canonical  coordinate  system  is  either
(t ,ϕ)→X ' [1, 3.5-25] or (θ ,ϕ)→X ' [1, 3.5-22, 3.5-24].

(4) the equation of the intersection curve uses the coordinates t (ϕ) or θ (ϕ).

In this subsection, we discuss how we may find the volumes of the regions bounded by a quadric 
and a plane by using the following equation from Divergence theorem:

∭
V

∇ T⃗ dV=∬
S

T⃗⋅d⃗s , (48)

where d⃗s=(
dy ' dz '
dz ' dx '
dx ' dy ' ). We  define  a  vector  field  T⃗ such  that {∇ T⃗=C0 ,

m⃗⋅T⃗=0,
where C0≠0. It

follows  from  ∇ T⃗=C0 that  ∭
V

∇ T⃗ dV=C0∭
V

dV=C 0V , which  is  the  volume  of  the

bounded solid multiplied by C0.

On the other hand, since m⃗⋅T⃗=0 , and the vector d⃗s (on the plane) is collinear with m⃗ ,  we
see that ∬

plane

T⃗⋅d⃗s=0 . Therefore the volume of the solid of intersection is the surface integral of

T⃗ over the given quadric. In other words we have

V=
1

C0
∬

S

T⃗⋅d⃗s . (49)

Next we attempt to find the simplest form for T⃗⋅d⃗s .  

Suppose we write T⃗  in the form of

T⃗=(c11 x '+ c12 y '+ c13 z ' , c21 x '+ c22 y '+ c23 z ' , c31 x '+ c32 y '+ c33 z ' ). (50)

We get ∇ T⃗=c11+ c22+ c33=C0 , m⃗⋅T⃗=m̃1 x '+m̃2 y '+m̃3 z '=0 , where

m̃1=m1 c11+ m2 c21+ m3 c31=0 , m̃2=m1c12+ m2c22+ m3c32=0 , and

m̃3=m1 c13+ m2 c23+ m3 c33=0 . (51)

We  have  3  equations  for  9  variables  and  one  inequality  C0≠0. We consider  the  following
scenarios.

Case 1. If the surface is a paraboloid, by using the change of variables equation (28), we get d⃗s

d⃗s=(
ds1

ds2

ds3
) with the components ds1=

( y ' , z ' )
( t ,ϕ)

dt d ϕ=
t 2 cosϕdt d ϕ

B⃗⋅V⃗ 3√λ2

,

ds2=
(z ' , x ' )
( t ,ϕ)

dt d ϕ=
t 2sinϕdt d ϕ

B⃗⋅V⃗ 3√λ 1

, and ds3=
(x ' , y ' )
(t ,ϕ)

dt d ϕ=
t dt d ϕ
√λ1λ2

. (52)
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We proceed to find T⃗⋅d⃗s=T⃗ p⋅d⃗s , where we use T⃗ p for the vector field T⃗ on the paraboloid.

It follows from the equations (51) and (52) that T⃗ p⋅d⃗s is a polynomial  of t . We observe that

the right side of equation (49) has nine terms of c ij . We can find seven terms of c ij to be equal

to zero. Furthermore, we find C0=1 and T⃗ p=(−
m3

m1

z ' ,0 , z ') , and note that

T⃗ p⋅d⃗s=
m3 t 4 cosϕdt d ϕ

2m1( B⃗ V⃗ 3)
2
√λ 2

−
t 3 dt d ϕ

2 B⃗ V⃗ 3√λ 1λ 2

.  Consequently, we get

V=∬
S

T⃗ p⋅d⃗s=

m3∫
0

2π

t (ϕ)5cosϕd ϕ

10m1( B⃗⋅V⃗ 3)
2
√λ 2

−

∫
0

2π

t (ϕ)4 d ϕ

8 B⃗⋅V⃗ 3√λ1λ2

, (53)

where t (ϕ) is the solution to the equation (29) for the curve of intersection.

Case 2. In the case of an ellipsoid, we use the change of variables equation (30), to get d⃗s  with

the components ds1=
( y ' , z ' )
(ϕ ,θ )

=bc cosϕ sin2θ , ds2=
(z ' , x ' )
(ϕ ,θ )

=ac sinϕ sin 2θ , and

ds3=
(x ' , y ' )
(θ ,ϕ)

=ab sinθ cosθ . (54)

Let T⃗ e be the vector field T⃗ on the ellipsoid. We find C0=2m1
2 a2
−m2

2 b2
−m3

2 c2 ,

T⃗ e=(−(m2
2 b2
+ m3

2 c2
) x '−m1 a2

(m2 y '+ m3 z ' ) ,m1(m2b2 x '+ m1a2 y ' ) ,m1(m3 c2 x '+ m1 a2 z ' )) .

T⃗ e d⃗s=(m1
2 a2
+m2

2b2
+m3

2 c2
)abc sin3θ cos2

ϕdθ d ϕ−m1
2 a3bc sinθ dθ d ϕ .  We get

∬
S

T⃗ e⋅d⃗s=(m1
2 a2
+m2

2 b2
+m3

2 c2
)abc∫

0

2π

cos2
ϕ d ϕ ∫

θ (ϕ)

π

sin3θ dθ−m1
2 a3bc∫

0

2π

d ϕ ∫
θ (ϕ)

π

sinθ d θ=

=(m1
2 a2
+m2

2 b2
+m3

2 c2
)abc∫

0

2π

cos2
ϕ(cosθ (ϕ)+

2−cos3θ (ϕ)

3
)d ϕ−m1

2 a3bc∫
0

2π

(1+cosθ (ϕ))d ϕ , (55)

where θ (ϕ) is the solution to the equation (32) for the curve of intersection.

Case 3. In the case of a hyperboloid of two sheets, we use the change of variables equation (33), to

get d⃗s  with the components ds1=
( y ' , z ' )
( t ,ϕ)

=bc sinh t cosh t ,

ds2=
(z ' , x ' )
( t ,ϕ)

=−ac sinh2 t cosϕ , and ds3=
(x ' , y ' )
(t ,ϕ)

=−ab sinh2 t sinϕ . (56)

Let T⃗ h be the vector field T⃗ on the hyperboloid. We obtain C0=2 m1
2 a2
+ m2

2 b2
+ m3

2 c2 ,

T⃗ h=((m2
2 b2
+ m3

2 c2
) x '−m1 a2

(m2 y '+ m3 z ' ) ,m1(−m2 b2 x '+ m1 a2 y ') ,m1(−m3 c2 x '+ m1 a2 z ' )) .

T⃗ h d⃗s=(−m1
2 a2
+m2

2 b2
+m3

2 c2
)abccosh2 t sinh t dt d ϕ+m1

2 a3 bc sinh t dt d ϕ .  We get

∬
S

T⃗ h⋅d⃗s=(−m1
2 a2
+m2

2b2
+m3

2 c2
)abc∫

0

2π

d ϕ∫
0

t (ϕ)

cosh2 t sinh t dt+m1
2 a3bc∫

0

2π

d ϕ∫
0

t (ϕ )

sinh t dt=

=(−m1
2 a2
+m2

2 b2
+m3

2 c2
)abc∫

0

2π
cosh3 t(ϕ)−1

3
d ϕ+m1

2 a3 bc∫
0

2π

(cosh t(ϕ)−1)d ϕ . (57)
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We now apply the equations (53), (55), and (57) to find the volume bounded by the quadric and the
plane as follows:

Example 4 We consider the scenario of the volume discussed in Example 1.  We substitute the
solution (29) for the intersection curve in the equation (53). We choose the unique positive solution,

taking  into  account  the  signs of  the  numbers n0 and
n0 n3

B⃗⋅V⃗ 3

. As a  result  of  calculations  we

obtain the volume of the solid S 1 to be about 20.80907893464 (see Maple worksheet in [9]).

Example 5 We  would  like  to  find  the  volume  bounded  by  the  ellipsoid  and  the  plane.  We
consider the scenario of the volume discussed in Example 2. We substitute the solution (32) for the
intersection curve in the equation  (53). As a result of the calculations, we find the volume of the
solid S 2 is approximately  50.496501830226. The  calculation  runs  faster  if  we  use  T⃗ e and
θ (ϕ). In this  case Maple is  able  to perform the symbolic  integration command  int. We use

different possible Maple int subcommands such as method = _d01akc and method = _Ncrule. They
lead to the same value of the volume but takes different time for calculations. (See Maple worksheet
in [9]).

Example 6 We consider the scenario of the volume discussed in Example 3.  We substitute the
solution (35) for the intersection curve in the equation (57). As a result of calculations we find the
volume of the solid S 3 to be about 46.9249144928 (see Maple worksheet in [9]).

We observe  from the  calculations made in this  section 4.3  that the vector field  T⃗ can be any

vector field satisfying {∇ T⃗=C0 ,C 0≠0,

m⃗⋅T⃗=0.
In the first calculation we use the simplest form for the

vector field T⃗=(0,n3 y '−n3

(1−n3)

n2

z ' ,−n2 y '+ (1−n3) z ' ). (58)

In this case, we do not need to load the Maple package, student[simpson] for calculation. We note
that  the computation  time  will  be much  less  when using Maple  command,  int,  after  obtaining

T⃗ p , T⃗ e , and T⃗ h individually.

4.4 Volume and the Stokes' Theorem–Part 1

Our focus now is to apply the Stokes'  theorem to find the volume  of the solid  bounded by the
quadric surface and the plane. Assume that we know the canonical equation of the quadric, the
equation of the plane m⃗⋅X⃗ '+m0=0 ,  where m⃗=(m1 ,m2 ,m3) is a unit vector, and the equation
of the curve of intersection. We consider the equation of

∭
V

∇F⃗ dV=∬
S

d⃗sF⃗ , where d⃗s=(
dy ' dz '
dz ' dx '
dx ' dy ' ).  (59)

We define a vector field F⃗ satisfying {∇F⃗= ⃗const ,
m⃗F⃗= 0⃗ .

For example, F⃗=(
m1 x '
m2 x '
m3 x ' ).  Then

∇F⃗=(
0
−m3

m2
) and we note that ∭

V

∇F⃗ dV=(
0

−m3 V
m2V ) . (60)
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On the other hand, since m⃗F⃗=0 we have ∬
plane

d⃗sF⃗=0 . In view of the equation (59) and

using the y '− component of the integral, we obtain

Volume=
1
m3

[∬
S

F⃗ d⃗s ]y '=∬
S

x ' dy ' dz '−
m1

m3

x ' dx ' dy ' . (61)

We now apply the equation (61) to  find the  volume bounded by the quadric  and the plane  as
follows:

Example 7 We consider the scenario of the volume discussed in Example 1.  As a result of the
calculations we have the volume of the solid S 1 to be about 20.80907893464 in both cases.(See
Maple worksheet in [9])

Example 8 We consider the scenario of the volume discussed in Example 2. With the change of
variables using the spherical coordinates we get

V
abc
=

1
3
∫
0

2π

(cos2
ϕ(2+cosθ (ϕ)sin2θ (ϕ)+2 cosθ (ϕ))+

m1 a

m3 c
sin3θ (ϕ)cosϕ)d ϕ . (62)

Similarly,  we may use the  z '− component for computing the integral  for equation  (60).  We
substitute d⃗s and get

V=
1
m2

[∬
S

F⃗ d⃗s ]z '=∬
S

m1

m2

x ' dz ' dx '− x ' dy ' dz ' . (63)

Moreover, we have

V
abc
=−

2
3
∫

0

2π

(1+sin2θ (ϕ)cosθ (ϕ)+cosθ (ϕ))cos2
ϕd ϕ+

+
m1 a

3 m2b
∫
0

2π

(2+cosθ (ϕ)sin2θ (ϕ)+2 cosθ (ϕ))sinϕ cosϕd ϕ . (64)

With the help of Maple, we perform numerical calculations  when both components are used. We
obtain  the  volume  of S 2 to  be  about 50.496501830226  when  y '− component  is  used  for
computation  and  S 2  to  be  about 50.496501830226 when  z '− component  is  used  for
computation. (See Maple worksheet in [9]).

Example 9 We consider the scenario of the volume bounded by the hyperboloid and the plane
discussed in Example 3. We follow the calculation technique from Example 5, and with the help of
Maple, we perform numerical calculations for both components and obtain the volume of the solid

S 3  to be about 46.9249144925 for the first case and 46.9249144927 for the second case. (See

Maple worksheet in [9]).

4.5. Calculation of the volume using Stokes' Theorem Part 2

The idea of using Stokes' theorem for calculating the volume of a solid is described as follows. We

choose a vector field F⃗ satisfying {∇ F⃗=(0,0 ,1) , x ' '< 0,
∇ F⃗=0⃗, x ' '> 0.

 For example, we set

F⃗=(
P
Q
0)=

1
2(

y ' '−x ' '
− y ' '

0 )arcsin( y ' '

√(x ' ' )2+( y ' ' )2). (65)
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We observe that

d⃗sF⃗=(F z ' ' ds y ' '−F y' ' ds z ' ') i⃗ +(F x' ' ds z ' '−F z dsx ' ') j⃗+(F y ' ' dsx ' '−F x' ' ds y ' ') k⃗ ,

d⃗sF⃗=−Q dx ' ' dy ' ' i⃗ +P dx ' ' dy ' ' j⃗+(Q dy ' ' dz ' '−P dx ' ' dz ' ' ) k⃗ ,

and for the z ' ' component we get 

∭
v

[∇F⃗ ]z ' ' dx ' ' dy ' ' dz ' '=∬
s

[ d⃗s F⃗ ]z ' '=∯
s

Q dy ' ' dz ' '−P dx ' ' dz ' ' . (66)

We see that the left-hand side of the equation (66) is equal to the volume of the solid piece to which
x ' '<0 .  In particular, we have the following: 

∭
v

∇F⃗ dx ' ' dy ' ' dz ' '=∭
v , x ' '<0

∇ F⃗ dx ' ' dy ' ' dz ' '=V x ' '< 0 ,

and the right side of (66) contains the surface integral over the entire surface of the quadric surface.

We now apply the equations (65) and (66) to find the volume bounded by the quadric and the plane
as follows:
Example 10 We consider the scenario of the volume discussed in Example 2. We get the volume
of the solid S 2 , a piece of the ellipsoid with x ' '<0 , by using the formula of

V x ' '< 0= ∯
ellipsoid

P ( x ' ' , y ' ' )dx ' ' dz ' '−Q (x ' ' , y ' ' )dy ' ' dz ' ' .  

As a result of calculation, we obtain the volume of the solid S 2  to be approximately 50.496500.
The same method can be applied for calculating the volume of the other piece of the ellipsoid,
which is about 31.181599 (See Maple worksheet in [10])

4.6. Calculation of the volume using the distance to the plane

Here we apply an integration method for calculating the volume of the intersecting solid by using
the distance from the quadric to the intersecting plane. However, the approach described here needs
to be addressed separately for each solid S 1 , S 2 , and S 3 , which we describe as follows:

4.6.1. For  the  considered  solids  S 1 , S 2 , and S 3 , it  is  convenient  to  choose a  coordinate
system Х ' ' so  that  the  equation  of  the  quadric  looks  like

X⃗ ' 'T r Ar T X⃗ ' '+2( A⃗0
T A+ B⃗)r X⃗ ' '+ A⃗0

T A A⃗0+2 B⃗ A⃗0+a00=0 , and the equation of the plane is of
the  form  of x ' '=0 .  The  cross  section  of  the  solids  is  the  ellipse  with  the  semi–axes

ae=√ a0 ' '
l y ' '

, and be=√ a0 ' '
l z ' '

, respectively. We perform the integration as follows:

∫
section

x ' ' ( y ' ' , z ' ' )d y ' ' dz ' '=ae be∫
0

2π

dψ∫
0

1

x ' ' (ae cosψ , be sinψ )ρ d ρ . (67)

For the solid S 3 the whole solid is inside an elliptical cylinder, whose generator is perpendicular

to the plane, see Figure 4 for demonstration. Therefore the calculated integral  (67) coincides with
the volume of the solid of intersection. As the result of calculations, we see the volume of the solid

S 3 to be approximately 46.9249144958. (See Maple worksheet in [11]).

For the solids S 1  and S 2 , the result of the calculations by the formula (67) is different from
the required volume. The given integral allows us to find only the volume of the piece of the solid
inside the elliptical cylinder, whose generator is perpendicular to the plane. 
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Figure 5. Volume of left solid defined correctly. Volume of right ellipsoid segment defined
incorrectly, part of it is outside the elliptical cylinder.

We describe  an  alternative  way of  calculating  the  volume  for  the  bounded  solid  by using  the
distance from the solid to the intersecting plane as follows:

4.6.2. Let an  arbitrary  surface f ( X⃗ ' )=0 be cut by  a plane  of the form n⃗⋅X⃗ '+n0=0, where

| n⃗ |=1.  We would like to find the volume of the solid bounded by the surface and the plane.

We assume  the  distance  from  point  X⃗ ' to  the  plane,  in  other  words,  the  length  of  the
perpendicular dropped from point X⃗ ' onto the plane, is equal to D= n⃗⋅X⃗ '+n0 .  The projection

of  the  elementary  area  d⃗S of  the  surface  f ( X⃗ ' )=0 on  the  plane  is  equal  to n⃗⋅d⃗S .
Therefore,  the  volume  bounded  by  the  surface  and  the  plane  can  be  calculated  by  using the
following formula

V=∬
surface

( n⃗⋅X⃗ '+n0) n⃗⋅d⃗s=∬
surface

(nx' x '+ny ' y '+nz ' z '+n0)(nx ' dy ' dz '+n y ' dx ' dz '+nz ' dx ' dy ' ). (68)

The calculations have been performed in the same way as in Section 4.4. As a result we obtained
that the volume of the solid S 1 is approximately 20.809078934644. Similarly, S 2 and S 3  can

be calculated and they are approximately 50.496501830224 and 46.9249144928, respectively. (See
Maple worksheet in [9]). The resulting formula (67) is similar to a similar one obtained in [2] (see
Theorem 12 in [2]).

5 Comparing The Results of Calculations

Paraboloid S 1 Ellipsoid S 2 Hyperboloid S 3

4.1 20.809078934643 50.496501830226 46.9249144931

4.2 20.8090792 50.4965018300 46.924952

4.3 20.809078934647 50.496501830226 46.9249144927

4.4 20.809078934644

20.809078934645

50.496501830226

50.496501830226

46.9249144926

46.9249144927

4.5 − 50.496500 −
4.6.1 − − 46.9249144958

4.6.2 20.809078934644 50.496501830224 46.9249144928
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6 Conclusion

In this paper, we summarize several methods of calculating the volume of a solid bounded by a
quadric surface and a plane. Through the combination use of the CAS, Maple, (see [4]) and the
geometric  software,  GInMA (see  [3]),  we are  able  not  only  to  perform complex  computations
algebraically but also visualize if our algebraic solutions coincide with our theories analytically.
Through advanced and evolving technological tools, students and researchers are able to explore
more challenging real-life problems.
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